welcome

in my blog

November 20, 2009

OSMOSIS



Osmosis memainkan peranan yang sangat penting pada tubuh makhluk hidup, misalnya, pada membrane sel darah merah. Jika kamu meletakan sel darah merah dalam suatu larutan hipertonik (lebih pekat), air yang terdapat dalam sel darah akan ditarik keluar dari sel sehingga sel mengerut dan rusak. Peristiwa ini disebut krenasi. Sebaliknya, jika kamu meletakan sel darah merah dalam suatu larutan yang bersifat hipotonik (lebih encer), air dari larutan tersebut akan ditarik masuk kedalam sel darah sehingga sel mengembang dan pecah. Proses ini disebut hemolisis. Orang yang mengonsumsi terlalu banyak makanan berkadar garam tinggi, jaringan sel dan jaringan antar selnya akan mengandung banyak air. Hal ini dapat menyebabkan terjadinya pembengkakan tubuh yang disebut edema.

Pemahaman mengenai proses osmosis ini sangat diperlukan dalam bidang kedokteran. Misalnya, dalam pemberian nutrisi bagi pasien melalui infus. Pada infus, larutan nutrisi dimasukan langsung kedalam pembuluh darah. Larutan ini harus memilik tekanan osmotik yang sama dengan tekanan osmotik darah agar sel darah tidak mengalami krenasi atau hemolisis karena sangat membahayakan jiwa pasien. Tekanan osmotik darah pada suhu 25 C adalah 7,7atm oleh karena itu, jika pasien akan diberi larutan glukosa melalui infus,konsentrasi glukosa yang digunakan harus memiliki persen masa 5,3%

November 17, 2009

jaring Laba-Laba

Teman-teman, apa yang terlintas di benak kamu ketika mendengar kata laba-laba? yup, jaring-jaringnya!.

Jaring laba-laba memiliki rancangan yang unik dengan perhitungan teknik yang menyertainya. Jika kita memperbesar laba-laba menjadi seukuran manusia, jaring yang dianyamnya itu akan memiliki tinggi sekitar 150 meter (waah, sama tingginya dengan gedung pencakar langit 50 lantai dong?!).

Lalu, bagaimana makhluk yang mungil ini membuat jaringnya ya?.

Pertama-tama, laba-laba melempar benang yang dipintalnya ke udara, lalu aliran udara membawanya ke tempat tertentu dimana benang menempel. Lalu pekerjaan konstruksi pun dimulai (wow, ternyata laba-laba seperti arsitek saja ya?). Nah, untuk menganyam sebuah jaring, si arsitek mungil ini memerlukan waktu sekitar satu jam.

Awalnya, laba-laba menarik benang jenis kuat dan tegang dari titik pusat ke arah luar guna mempersiapkan kerangka jaringnya. Ia lalu menggunakan benang jenis kendor dan lengket untuk membuat lingkaran dari arah luar ke dalam. Dan kini jaring-jaringnya yang berfungsi sebagai perangkap mangsa itu pun telah siap.

Tahukah teman-teman, kalau benang laba-laba itu lima kali lebih kuat dari serat baja dengan ketebalan yang sama?. Jika seutas tali berdiameter 30 cm terbuat dari benang laba-laba, maka ia akan mampu menahan berat 150 mobil. Padahal, benang ini lebih tipis dari rambut manusia lho!, ia pun lebih ringan dari kapas, tapi luar biasanya ia lebih kuat dari baja!.

Baja (yang merupakan bahan terkuat) saja didesain khusus agar berdaya tahan tinggi, digunakan pada konstruksi bentang lebar, bangunan tinggi, dan jembatan. Lalu bagaimana dengan laba-laba, sang makhluk mungil yang tak mampu berpikir, bagaimana ia bisa menghasilkan benang dalam tubuhnya yang bisa lebih kokoh daripada baja sekalipun?. Tak diragukan lagi, ini adalah bukti bahwa laba-laba diberi ilham agar dapat membuat jaring yang mengagumkan.

Dialah Allah, Tuhan Seluruh Alam, yang menciptakan makhluk-makhluk-Nya dengan perilaku mereka yang mengagumkan, dan mengilhami mereka tentang apa yang mereka kerjakan. Subhanallah..!!! Sungguh Mahabesar Allah, Sang Pencipta Maha Luar Biasa.

“Sesungguhnya, Tuhanmu hanyalah Allah, yang tidak ada Tuhan selain Dia. Pengetahuan-Nya meliputi segala sesuatu.” (Q.S. Thaahaa, 20:98)

November 14, 2009

Sel #x# "Unit Kehidupan Terkecil"

A. SEJARAH PENEMUAN SEL
Sel adalah unit terkecil dalam organisme hidup, baik dalam dunia tumbuh-tumbuhan maupun hewan. Sel terdiri atas protoplasma, yaitu, isi sel yang terbungkus oleh suatu membran atau selaput sel.
Evolusi sains seringkali berada sejajar dengan penemuan peralatan yang memperluas indera manusia untuk bisa memasuki batas-batas baru. Penemuan dan kajian awal tentang sel memperoleh kemajuan sejalandengan penemuan dan penyempurnaan mikroskop pada abad ke tujuh belas. Sehingga mikroskop sejak awal tidak dapat dipisahkan dengan sejarah penemuan sel, yang dijelaskan sebagai berikut:
• Galileo Galilei (Awal Abad 17) dengan alat dua lensa menggambarkan struktur tipis dari mata serangga. Gallei sebenarnya bukan seorang biologiwan pertama yang mencatat hasil pengamatan biologi melalui mikroskop.
• Robert Hook (1635-1703) melihat gambaran satu sayatan tipis gabus suatu kompertemen atau ruang-ruang disebut dengan nama Latin cellulae (ruangan kecil), asal mula nama sel.
• Anton van Leeuwenhoek (24 Oktober 1632 – 26 Agustus 1723), menggunakan lensa-lensa untk melihat beragam spermatozoa, bakteri dan protista.
• Robert Brown (1733-1858) pada tahun 1`820 merancang lensa yang dapat lebih fokus untuk mengamati sel. Titik buram yang selalu ada pada sel telur, sel polen, sel dari jaringan anggrek yang sedang tumbuh. Titik buram disebut sebagai nukleus.
• Matias Jacob Schleiden pada tahun 1838 berpendapat bahwa ada hubungan yang erat antara nukleus dan perkembangan sel.
• Teodor Schwan (1810-18830): Sel adalah bagian dari organisme

B. TEORI SEL
Rudolf Virchow (1821-1902) seorang ahli fisiologi menyatakan bahwa sel membelah menjadi dua sel. Sel berasal dar sel yang sudah ada.
Analis mikroskopis pada pertengahan abad 19 membuktikan bahwa sel adalah unit terkecil kehidupan yang berlangsung terus menerusberasal dari pertumbuhan dan pembelahan sel tunggal. Konsep-konsep tersebut menjadi teori sel:
1. Semua organisme tersusun atas satu se atau lebih sel
2. Sel adalah unit terkecil yang memiliki semua persyaratan hidup
3. Keberlangsungan kehidupan secara langsung berasal dari pertumbuhan dan pembelahan sel.

C. SEL PROKARIOTIK DAN EUKARIOTIK
Sel ialah satu unit kehidupan. Semua benda hidup baik hewan atau tumbuhan disusun oleh sel. Sel-sel ini berkumpul dan bergabung dengan adanya bahan antara sel diantaranya untuk membentuk jaringan seperti otot, tulang rawan dan saraf. Dalam keadaan tertentu beberapa jaringan bergabung dan membina organ seperti kelenjar, pembuluh darah, kulit dal lain-lain.
Di alam inikita dapat membagi sel ke dalam dua kelompok, yaitu sel prokariotik dan sel eukariotik. Istilah prokariotik, dibangun dari kata pro dan karyon. Pro, artinya sebelum dan kryon, artinya inti. Jadi sel prokariotiiik artiya ”sebelum inti”. Ini mengandung pengertian bahwa sel prokariotik bukannya tanpa inti, melainkan memiliki materi genetik yang tersebar di dalam sitplasmanya. Eukariot dibangun dari kata Eu da Karyon. Eu, berarti sungguh dan karyon berarti inti. Jadi sel eukariotik adalah sel-sel yang telah memiliki inti sel, atau sel yang memiliki materi inti yang terorganisasi dalam suatu selaput, sehingga inti selnya tampak jelas (Sumardi dan Marianti, 2007).
Telah diketahui bahwa semua organisme hidup di bumi sekarang berasal dari sel tunggal yang lahir 3.500 berjuta-juta tahun yang lalu. Sel purba ini digambarkan dengan suatu selaput di sebelah luar, salah satu peristiwa yang rumit yang memimpin penetapan hidup di atas bumi. Molekul organik sederhana tersebut mungkin telah diproduksi dalam kondisi-kondisi yang memungkinkannya hidup dan lestari di bumi dalam status awal hidpunya (kira-kira selama milyaran tahun pertamanya).
• Sel Prokariot
Yang termasuk di dalam golongan sel-sel prokariotik adalah bakteri dan ganggang hijau-biru atau Cyanobacteria. Struktur sel bakteri dapat di lihat pada gambar berikut:




Berdasarkan gambar di atas, dapat dilihat di bagian dalam membran plasma terdapat sitoplasma, ribosom dan nukleoid. Sitoplasma dapat mengandung vakuola, vesikel (vakuola kecil) dan menyimpa cadangan gula komplek atau bahan-bahan organik. Ribosom terdapat bebas di dalam sitoplasma dan tempat terjadinya sintesis protein.

• Sel Eukariot
Sel-sel eukariotik memiliki struktur yang lebh maju dari pada sel-sel prokariotik. Sel pada umumnya terlihat sebagai massa yang jenih dengan bentuk yang tidak teratur, dibatasi oleh sutu selaput dan ditengah-tengahnya tedapat bangunan yang lebih pucat yang bentuknya bulat, disebut nnukleus atau inti sel. Jadi secara umum sel itu dibina oleh selaput atau membran sel, plasma sel, dan inti sel. Di bawah dapat dilihat struktur sel eukariotik (sel hewan dan sel tumbuhan):



a. Membran Sel
Membran plasma merupakan batas kehidupan, batas yang memisahkan sel hidup dengan sekelilingnya yang mati. Lapisan tipis yan luar biasa ini tebalnya kira-kira 8 nm. Seperti semua membran biologis, membran plasma memiliki permeabilitas selektif, yakni membran ini memungkinkan beberapa substansi dapat melintasinya dengan mudah daripada substansi lainnya. (Campbell, dkk., 2002)
Berikut dapat dilihat struktur dari membran plasma:



Secara umum, fungsi membran plasma adalah sebagai berikut (Landriani, 2007) :
1. Mengatur transport zat
2. Melindungi sitoplasma dan isi sel
3. Terdapat protein integral untuk transport aktif
4. Terdapat protein perifer untuk menangkap zat yang dibutuhkan

b. Sitoplasma
Sitoplasma disebut juga plasma sel. Istilah ini digunakan untuk memberikan nama dari cairan sel dan segala sesuatu yang terlarut di dalamnya, untuk membedakan cairan yang berada dalam inti sel, yaitu nukleoplasma.

Sitoplasma berada dalam sistem koloid kompleks, sebagian besar adalah air yang di dalamnya terlarut molekul- molekul kecil maupun besar (makromolekul), ion-ion, dan bahan hidup atau organel-organel. Organel-organel yang terdapat dalam sitoplasma antara lain:
a) Retikulum endoplasma
Retikulum endoplasma berupa sistem membran yang sangat luas di dalam sel, berupa saluran-saluran dan tabung pipih. Ruang yang terkurung itu mungkin saling berhubungan Retikulum endoplasma ada dua jenis, yaitu:
- RE kasar atau bergranula
- RE halus atau tak bergranula



RE kasar kerana terdapat unit-unit ribosom pada permukaan external membrannya. RE halus tidak mempunyai ribosom pada permukaannya. RE licin banyak terdapat dalam sel-sel hepar dan kelenjar adrenal.
b) Ribosom
Ribosom merupakan struktur yang paling kecil yang tersuspensi di dalam sitoplasmanya. Bentuknya agak bulat, dengan diameter kurang lebih 250 A. Fungsi ribosom adalah sebagai tempat sintesis protein. Di bawah mikroskop elektron, tampak bahwa ribosom terdiri dari dua bagian, yang satu leih besar dari yang lain:



c) Badan Golgi
Badan Golgi terbentuk oleh susunan lempengan kantong-kantong yang khas dikelilingi membran. Lempengan kantong ini disebut sisterna. Dalam sel tumbuhan, badan Golgi terdiri atas susunan dari beberapa sisterna. Pada penghujung kantong terdapat kantong-kantong bulat kecil atau vesikula yang menempel dan yang seolaholah terjentik dari ujung kantong yang berukuran lebih besar (Sheeler and Bianchi, 1987).




Badan Golgi sebagai organel sel eukariotik mempunyai fungsi yang beragam, antara lain (Sheeler and Bianchi, 1987):
1) Mengemas bahan-bahan sekresi yang akan dibebas-kan dari sel,
2) Memproses protein-protein yang telah disintesa oleh ribosom dari retikulum endoplasma,
3) Mensintesa polisakarida tertentu dan glycolipids,
4) Memilih protein untuk berbagai lokasi di dalam sel,
5) Memperbanyak elemen membran yang baru bagi membran plasma, dan
6) Memproses kembali komponen-komponen membran plasma yang telah memasuki sitosol selama endositosis. Badan golgi berperan dalam banyak proses selular yang berbeda tetapi yang utama adalah dalam hal sekresi.

d) Mitokondria
Mitokondria berbentuk lonjong atau oval, berdiameter kurang lebih 0,2 µm. Mitokndra memiliki membran rangkap, membran dalam membentuk lipata-lipatan yang dinamakan krista. Di dalam sel jumanya banya sekali, terutama pada sel-se yang giat bekerja seperti hat, ginjal, dan sel-sel otot. Fungsi utama dari mitokondria adalah sebagai tempat respirasi sel atau sebagai pembangkit energi.



e) Lisosom
Lisosom adalah struktur-struktur kecil, berbentuk agak bulat dan bermembran. Ia merupakan organel sitoplasma yang mengandung berbagai jenis enzim hidrolisis. Dapat dibedakan atas lisosom primer dan lisosom sekunder. Lisosom hanya ditemukan pada sel hewan saja.




f) Kloroplast
Kloroplast hanya terdapat pad tumbuhan dan ganggang tertentu. Kloroplas dibatasi oleh membran rangkap, di dalamnya terdapat cairan atau matriks fluid yang disebut stroma, dapat dilihat pada gambar berikut:

Berdasarkan gambar dapat dilihat bahwa pada bagian dalam stroma terdapat struktur yang membran yang dinamakan tilakoid. Tumpukan tilakoid disebut granum. Bagian dalam tilakoid disebut lokulus. Tilakoid yang menghubungkan antar grana disebut fret. Di dalam membran tilakoidterdapat enzim-enzim untuk kelengkapan reaksi terang fotsintesis, dan di sinilah terdapatnya lorofil. Jadi fungsi tilakoid adalah sebagai tempat berlangsungnya reaksi terang fotosintesis. Sedangkan pada stroma terdapat enzim-enzim yang sangat penting untuk reduksi CO2 menjadi kabohidrat. Jadi fungsi stroma adalah tempat berlangsungya reaksi gelap fotosintesis

g) Peroksisom
Peroksisom merupakan ruangan metabolisme khusus yang dilingkupi oleh membran tunggal (gambar). Peroksisom mengandung enzim yang mentransfer hidrogen dari berbagai substrat ke oksigen, yang menghasilkan hidrogen peroksida (H2O2) sebagai produk samping, dari sinilah organel tersebut mengambil namanya.






Peroksisom berbentuk agak bulat dan sering memiliki inti butiran atau kristal yang mungkin saja kumpulan banyak enzim. Peroksisom ini berada dalam sel daun. Berdasarkan gambar di atas dapat dilihat kedekatannya dengan dua keloroplastdan sat mitokondria. Organel-organel ini bekerja sama dengan peroksisom dalam fungsi metabolisme tertentu.
h) Vakuola
Vakuola dan vesikula merupakan kantung terikat membran di dalam sel, tetapi vakuola lebih besar daripada vesikula. Vakuola sentral biasanya merupakan ruangan terbesar di dalam sel tumbuhan, yang meliput 80% atau lebih dari sel dewasanya. Vakuola sel tumbuhan merupakan ruangan yang serbaguna. Vakuola ini merupakan tempat menyimpan senyawa organik, seperti protein yang ditumpuk dalam vakuoa sel penyimpanan dalam benih. Vakuola ini juga ,erupakan tempat penimbunan ion anorganik yang utama dari sel tumbuhan, seperti kalium dan klorida.

c. Inti Sel
Nukleus merupakan organel yang paling penting bagi sel. Ada sel yang mempunyai dua nukleus seperti sel otot jantung dan ada multinukleus seperti sel otot rangka. Dari segi morfologi, nukleus terdiri atas:
a) membran nukleus
b) kromatin
c) nukleolus
d) nukleoplasma









Inti sel berbentuk bulat atau lonjong, dibatasi oleh membran rangkap. Fungsi inti sel adalah sebagai pusat aktivitas sel dan sebagai pengatur pewarisan sifat-sifat keturunan (kromosom).

D. PERBEDAAN SEL PROKARIOT DAN EUKARIOT
Berikut adalah tabel perbedaan sel prokatiot dan eukariot:

November 10, 2009

Glikolisis dan dekarboksilasi Oksidatif "Reaksi Antara"

Glikolisis merupakan proses pengubahan molekul sumber energi, yaitu glukosa yang mempunyai 6 atom C manjadi senyawa yang lebih sederhana, yaitu asam piruvat yang mempunyai 3 atom C. Reaksi ini berlangsung di dalam sitosol (sitoplasma). Reaksi glikolisis mempunyai sembilan tahapan reaksi yang dikatalisis oleh enzim tertentu, tetapi disini tidak akan dibahas enzim-enzim yang berperan dalam proses glikolisis ini. Dari sembilan tahapan reaksi tersebut dapat dikelompokkan menjadi dua fase, yaitu fase investasi energi, yaitu dari tahap 1 sampai tahap 4, dan fase pembelanjaan energi, yaitu dari tahap 5 sampai tahap 9.

Pertama-tama, glukosa mendapat tambahan satu gugus fosfat dari satu molekul ATP, yang kemudian berubah menjadi ADP, membentuk glukosa 6-fosfat. Setelah itu, glukosa 6-fosfat diubah oleh enzim menjadi isomernya, yaitu fruktosa 6-fosfat. Satu molekul ATP yang lain memberikan satu gugus fosfatnya kepada fruktosa 6-fosfat, yang membuat ATP tersebut menjadi ADP dan fruktosa 6-fosfat menjadi fruktosa 1,6-difosfat. Kemudian, fruktosa 1,6-difosfat dipecah menjadi dua senyawa yang saling isomer satu sama lain, yaitu dihidroksi aseton fosfat dan PGAL (fosfogliseraldehid atau gliseraldehid 3-fosfat). Tahapan-tahapan reaksi diatas itulah yang disebut dengan fase investasi energi.

Selanjutnya, dihidroksi aseton fosfat dan PGAL masing-masing mengalami oksidasi dan mereduksi NAD+, sehingga terbentuk NADH, dan mengalami penambahan molekul fosfat anorganik (Pi) sehingga terbentuk 1,3-difosfogliserat. Kemudian masing-masing 1,3-difosfogliserat melepaskan satu gugus fosfatnya dan berubah menjadi 3-fosfogliserat, dimana gugus fosfat yang dilepas oleh masing-masing 1,3-difosfogliserat dipindahkan ke dua molekul ADP dan membentuk dua molekul ATP. Setelah itu, 3-fosfogliserat mengalami isomerisasi menjadi 2-fosfogliserat. Setelah menjadi 2-fosfogliserat, sebuah molekul air dari masing-masing 2-fosfogliserat dipisahkan, menghasilkan fosfoenolpiruvat. Terakhir, masing-masing fosfoenolpiruvat melepaskan gugus fosfat terakhirnya, yang kemudian diterima oleh dua molekul ADP untuk membentuk ATP, dan berubah menjadi asam piruvat. (lihat bagan)

Setiap pemecahan 1 molekul glukosa pada reaksi glikolisis akan menghasilkan produk kotor berupa 2 molekul asam piruvat, 2 molekul NADH, 4 molekul ATP, dan 2 molekul air. Akan tetapi, pada awal reaksi ini telah digunakan 2 molekul ATP, sehingga hasil bersih reaksi ini adalah 2 molekul asam piruvat (C3H4O3), 2 molekul NADH, 2 molekul ATP, dan 2 molekul air. Perlu dicatat, pencantuman air sebagai hasil glikolisis bersifat opsional, karena ada sumber lain yang tidak mencantumkan air sebagai hasil glikolisis.



Dekarboksilasi Oksidatif [kembali ke atas]

Setelah melalui reaksi glikolisis, jika terdapat molekul oksigen yang cukup maka asam piruvat akan menjalani tahapan reaksi selanjutnya, yaitu siklus Krebs yang bertempat di matriks mitokondria. Jika tidak terdapat molekul oksigen yang cukup maka asam piruvat akan menjalani reaksi fermentasi. Akan tetapi, asam piruvat yang mandapat molekul oksigen yang cukup dan akan meneruskan tahapan reaksi tidak dapat begitu saja masuk ke dalam siklus Krebs, karena asam piruvat memiliki atom C terlalu banyak, yaitu 3 buah. Persyaratan molekul yang dapat menjalani siklus Krebs adalah molekul tersebut harus mempunyai dua atom C (2 C). Karena itu, asam piruvat akan menjalani reaksi dekarboksilasi oksidatif.

Dekarboksilasi oksidatif adalah reaksi yang mengubah asam piruvat yang beratom 3 C menjadi senyawa baru yang beratom C dua buah, yaitu asetil koenzim-A (asetil ko-A). Reaksi dekarboksilasi oksidatif ini (disingkat DO) sering juga disebut sebagai tahap persiapan untuk masuk ke siklus Krebs. Reaksi DO ini mengambil tempat di intermembran mitokondria.

Pertama-tama, molekul asam cuka yang dihasilkan reaksi glikolisis akan melepaskan satu gugus karboksilnya yang sudah teroksidasi sempurna dan mengandung sedikit energi, yaitu dalam bentuk molekul CO2. Setelah itu, 2 atom karbon yang tersisa dari piruvat akan dioksidasi menjadi asetat (bentuk ionisasi asam asetat). Selanjutnya, asetat akan mendapat transfer elektron dari NAD+ yang tereduksi menjadi NADH. Kemudian, koenzim A (suatu senyawa yang mengandung sulfur yang berasal dari vitamin B) diikat oleh asetat dengan ikatan yang tidak stabil dan membentuk gugus asetil yang sangat reaktif, yaitu asetil koenzim-A, yang siap memberikan asetatnya ke dalam siklus Krebs untuk proses oksidasi lebih lanjut. (lihat bagan)

Selama reaksi transisi ini, satu molekul glukosa yang telah menjadi 2 molekul asam piruvat lewat reaksi glikolisis menghasilkan 2 molekul NADH.

November 09, 2009

replikasi DNA

Konservasi Informasi Genetika

Untuk mempertahankan hidupnya organisme berkembang-biak dengan cara kawin ataupun dengan cara tidak kawin. Kawin merupakan cara pembiakan utama pada organisme tingkat tinggi. Pada organisme tingkat rendah, cara tidak kawin merupakan strategi utamanya. Nampaknya, arah perubahan evolutif bergerak dari strategi tidak kawin menjadi strategi kawin [mengapa?]. Baik cara kawin atau tidak kawin, prinsipnya adalah menghasilkan turunan berikutnya yang sama atau sedikit sama. Jadi, setiap organisme yang berbiak harus memiliki sifat dan kemampuan meng-kopy dirinya sendiri menjadi copy lainnya yang serupa.

Sel adalah unit dasar hidup. Semua organisme hidup tersusun dari unit sel tunggal atau sel banyak. Untuk mempertahankan hidupnya, sel memperbanyak dirinya dari satu generasi ke generasi lain dengan cara meng-copy dirinya dari satu menjadi dua, dari dua menjadi empat, dan seterusnya. Bukan saja soal jumlah sel yang berlipat-ganda, volume sel pun meningkat linier searah dengan peningkatan jumlah sel.

Karena komposisi dan jumlah zat-zat penyusun sel tunggal dari satu generasi ke generasi selanjutnya relatif tetap, maka terjadi peningkatan biomasa secara linier sesuai dengan jumlah sel. Artinya bahwa seiring dengan peningkatan jumlah sel, berlangsung biosintesis senyawa-senyawa penyusun tubuh sel terutama karbohidrat, protein, asam-asam nukleat dan lemak. Mereka adalah bahan baku penyusun tubuh sel seperti dinding sel, membrane, cairan sel, dan organela; atau menjadi mesin-mesin fungsional bekerjanya aspek-aspek fisiologis sel seperti enzim, penghantaran dan alih-ragam signal (signal transduction), sistem kekebalan tubuh, atau cadangan energi kimia.

Keempat golongan senyawa penyusun utama tubuh sel itu disintesis dari senyawa-senyawa antara seperti asam amino, nukleotida, gula dan asam lemak. Senyawa-senyawa antara ini disintesis dari unsur-unsur yang jauh lebih sederhana lagi seperti glukosa, amonia, dan garam-garam anorganik. Dalam hal ini, glukosa disintesis langsung oleh organisme berklorofil, melalui proses fotokimia dan biokimia fiksasi CO2 dan konversi energi radiasi matahari ke dalam ikatan-ikatan kimia karbon glukosa. Organisme yang tidak berklorofil bergantung penyediaan energi dan senyawa karbon dari organisme berklorofil.

Pertanyaannya ialah, “apa kiranya yang menyebabkan sel dan organisme mampu memperbanyak dirinya sendiri dan mewariskan semua informasi genetis yang terkandung kepada sel turunannya?” Teori kromosom tentang pewarisan informasi menerangkan bahwa selama proses mitosis satu sel membela menjadi dua sel. Namun sebelum pembelahan sel berlangsung, jumlah kromosomnya berlipat-ganda. Pada sel manusia dari 46 menjadi 92 sebelum kemudian dipilah menjadi masing-masing 46 untuk sel-sel turunannya. Dalam pembelahan meiosis, satu sel diploid menggandakan bahan genetiknya sekali namun diikuti oleh pembelahan sel dua kali. Sehingga, satu sel diploid menghasilkan empat sel haploid. Setiap sel memiliki jumlah kromosom separuh dari jumlah kromosom sel induknya.

Dengan membandingkan jumlah DNA pada sel-sel diploid dan sel-sel haploid diperoleh data bahwa jumlah DNA pada sel-sel diploid memiliki jumlah DNA dua kali-lipat. Seandainya satu sel diploid memiliki 9 pg (pico gram; 10-12 g) DNA maka sel haploid memiliki 4.5 pg DNA. Dalam hal ini, jumlah kelipatan DNA selaras dengan jumlah kelipatan kromosom. Dengan demikian, setiap sekali pembelahan sel mitosis jumlah DNA-nya pun bertambah dua dua kali.

Visualisasi replikasi DNA berselaras dengan replikasi kromosom selama proses pembelahan sel mitosis didemonstrasikan oleh Herber Taylor (1958). Ia memberi makan tanaman keluarga lili dengan thimin radioaktif, setelah sel-selnya membelah. Tanaman-tanaman tersebut kemudian dipindahkan ke dalam media tanpa radioisotop. Preparat kromosom yang berasal baik sebelum, selama dan setelah perlakuan isotop disiapkan dipermukaan slide kaca, dan disingkap kepermukaan film fotograf.

Hasilnya bahwa sebelum kromosom itu diperlakukan dengan isotop thimin, kromosomnya tidak menghasilkan "pengenal" dalam kromosom berupa warna "hitam hangus" di permukaan film. Kromosom yang langsung dipersiapkan dari perlakuan thimin menghasilkan "pengenal" pada kedua pasang kromosom dipermukaan film. Menariknya, kromosom yang dipersiapkan dari tanaman yang telah dipindahkan ke media tanpa thimin isotop yang sebelumnya diperlakukan dengan radioisotop, terdapat kromosom yang satu dari pasangannya tidak ditemui pengenal (kecuali di daerah pindah-silang). Eksperimen ini membuktikan bahwa Sintesis DNA berselaras dengan replikasi DNA dan bersifat linear terhadap struktur kromosom, dan terjadi sekali untuk setiap kali pembelahan sel.

Sifat memperbanyak diri secara vegetatif demikian tidak hanya dimiliki oleh bahan genetik dalam kromosom. DNA sirkuler yang disebut plasmid atau DNA batangan pada virus berkemampuan memperbanyak diri dengan cara mengkopi molekul DNA tunggal menjadi sepasang ikatan DNA ganda. Proses mengkopi diri sendiri dari polimer DNA menjadi jiplakan-jiplakan DNA identik disebut replikasi DNA.


Replikasi DNA

Selang beberapa saat setelah publikasi Crick dan Watson mengenai struktur rantai ganda DNA, mereka kemudian mengemukakan implikasi struktur rantai ganda ini kepada mekanisme cetak-kopi informasi. Baik penelitian E. Chargaff dan Herbert Taylor membuktikan bahwa DNA bereplikasi semikoservatif. Artinya bahwa dalam sintesis DNA, dengan bahan awal DNA yang mampu memperbanyak diri, replicon, seperti plasmids dan kromosom, setiap rantai tunggal DNA berfungsi sebagai cetakan bagi sintesis rantai DNA baru pasangannya.

Pertanyaannya ialah, “bagaimana mekanisme biosintesis DNA sesungguhnya terjadi di dalam sel?” Arthur Kornberg menjawab pertanyaan ini dengan mendekatinya melalui pendekatan ensimatik. Ia berpendapat: "replikasi rantai nukleotida pasti dikatalisis oleh suatu enzim". Atas dasar pandangan tersebut, ia berusaha mengisolasi enzim yang bertanggungjawab pada biosintesis DNA dan mempelajari mekanisme aksi ensimnya.

Ia membuat ekstrak protein dari bakteri E. coli dan menambahkannya ke dalam suatu campuran reaksi dengan sejumlah komponen berikut: deoksinukleosida trifosfat dimana atom P dan C-nya menggunakan 32P atau 14C dan deoksinukleosidanya mengandung keempat basa nitrogen A, T, G, C; Mg++, serta DNA sebagai cetakan. Dengan campuran ini dalam tabung reaksi, diharapkan akan terbentuk polinukleotida dengan berat molekul yang lebih tinggi.

Usahanya berhasil, dan bukti-bukti menunjukkan bahwa bahwa polimerisasi dimaksud menunjuk kepada biosintesis DNA. Ia mendemonstrasikan bahwa polimerisasi DNA hanya dapat berhasil jika keempat deoksinukleosida trifosfat dan cetakan ada dalam komponen reaksi. Selanjutnya, dengan adanya alat uji (bioassay) aktifitas enzim yang mensintesis DNA, memungkinkan diisolasinya enzim yang bertanggung-jawab pada reaksi tersebut. Kornberg menamai enzim tersebut DNA polimerase.

Reaksi kimia yang dipercepat oleh DNA polimerase adalah mensintesis polinukleotida sambil melepaskan satu molekul pirofosfat (P-P) untuk setiap penambahan satu nukleosida trifosfat ke dalam rantai baru. Bukti yang paling kuat mendukung bahwa reaksi in vitro dipercepat oleh DNA polimerase bukan sekedar polimerisasi acak nukleotida, tetapi terlibat dalam replikasi DNA, adalah bahwa DNA cetakan yang ditambahkan ke dalam campuran reaksi tidak hanya diperlukan agar polimerisasi berlangsung, tetapi juga sebenarnya menentukan ciri dari polinukleotida yang di bentuk.

Melalui analisis komposisi basa nukleotida yang terbentuk setelah reaksi enzimatis dari berbagai macam DNA cetakan, Arthur Kornberg berhasil menunjukan bahwa DNA yang disintesis mengikuti ciri komposisi basa cetakan DNA-nya. Penelitian lanjut membuktikan bahwa DNA cetakan mengarahkan tidak hanya komposisi keseluruhan basa yang terbentuk, tetapi frekuensi relatif dari basa-basa yang terbentuk.

Berdasarkan studi sintesis DNA secara in vitro, dapat dikatakan bahwa DNA bertindak langsung sebagai cetakan dalam proses kopolimerisasi teratur replika-replika yang terbentuk tanpa membutuhkan sintesis senyawa antara bukan DNA. Dalam perkembangan studi biokimia, kemudian dapat dirancang bangunan yang lebih detil replikasi DNA, serta berbagai enzim yang terlibat.

Mekanisme pembelahan sel

Pertanyaan lanjut ialah, bagaimana sesungguhnya sel menggandakan DNA nya sendiri dan kemudian mendistribusikannya secara meraka kepada sel turunannya secara sama? Untuk menjawab pertanyaan tersebut, sel berhadapan dengan persoalan koordinasi antar bagian dan proses, yaitu bahwa karena replikasi DNA hanya berlangsung sekali untuk setiap sekali pembelahan sel, replikasi DNA harus terpadu dengan pembelahan sel. Replikasi DNA harus mendahului pembelahan sel agar sebelum pembelahan sel berlangsung, telah tersedia bahan genetik untuk diagihkan kepada masing-masing sel turunan.

Untuk menjawab pertanyaan tersebut, maka replikasi DNA merupakan bagian keseluruhan dari pembelahan sel, dan merupakan proses awal bagi sel berkomitmen meneruskan proses pembelahan sel. Sekali pembelahan sel diawali ia tidak bisa kembali lagi ketahap semula, dan harus menyelesaikan proses sintesis DNA sebelum pembelahan sel berlangsung. Pembelahan sel tidak boleh terjadi jika replikasi DNA belum selesai. Di dalam kenyataannya, selesainya proses replikasi merupakan pemicu bagi terjadinya pembelahan sel. Jika aturan ini dilanggar, maka transmisi informasi akan mengalami kegalauan.

Pada prokarion, replikasi DNA berawal di suatu tempat yang amung yang disebut daerah “pengawalan” (origin). Sebaliknya pada eukarion, replikasi DNA dimulai di awal fase S, yaitu fase yang memiliki periode yang panjang dalam pembelahan sel, yang dalam periode tersebut sintesis DNA berlangsung, bahkan berlangsung di banyak titik-titik pengawalan di dalam genom.

November 08, 2009

Sel Darah Putih " Leukosit"

Bergranulla
a. Neutrophil,
Berfungsi membantu melindungi tubuh melawan infeksi bakteri dan jamur dan mencerna benda asing sisa-sisa peradangan. Diameternya antara 12-15 µm. Jumlahnya sekitar 50 - 70 % dari total sel darah putih. Merupakan salah satu jenis sel darah putih yang bergranulla, dimana granullanya berwarna merah namun hanya sedikit diseluruh sitoplasma, dengan jumlah nukleus terdiri dari tiga lobe atau lebih dimana masig-masing lobe hanya dihubungkan oleh filament sehingga terlihat seperti terpisah.


b. Eosinophil,
Berfungsi membunuh parasit, merusak selsel kanker dan berperan dalam respon alergi.Jumlah eosinophil dalam sel darah putih yaitu sekitar 2 - 4 %, dimana diameternya sama dengan diameter neutrophil yaitu 12 - 15 µm. Jumlah nukleusnya terdiri dari dua lobe yang keduanya juga terhubung oleh filament. Granulla eosinophil berwarna merah kekuningan, dalam sitoplasma jumlahnya sedikit sehingga nucleus masih dapat dilihat jelas.

c. Basophil,
Fungsinya berperan dalam respon alergi. Diameter basophil lebih kecil dari neutrophil dan basophil yaitu sekitar 9-10 µm. Jumlahnya 1% dari total sel darah putih. Granullanya berwarna merah kebiruan dalam sel jumlahnya sangat banyak hampir menutupi semua sel, sehingga nucleus yang jumlah lobe dua dan terhubung oleh filament tidak dapat dilihat jelas.

Tak Bergranulla
a. Monocytes,
Berfungsi mencerna sel-sel yang mati atau yang rusak dan memberikan perlawanan imunologis terhadap berbagai organisme penyebab infeksi. Nuleusnya terdiri dari dua lobe yang menyatu. Jumlah monocytes sekitar 3 - 8 % dalam sel darah putih dengan diameter antara 16-20 µm.

b. Lymphocytes,
Fungsinya memberikan perlindungan terhadap infeksi virus dan bisa menemukan dan merusak beberapa sel kanker dan membentuk sel-sel yang menghasilkan antibodi atau sel plasma. Nukleusnya berbentuk bulat hamper memenuhi sel atau dengan kata lain hanya ada satu lobe. Jumlahnya sekitar 20-40% dalam sel darah putih, dengan diameter 8-10 µm.

November 06, 2009

fotosintesis

Organisasi dan fungsi suatu sel hidup bergantung pada persediaan energi yang tak henti-hentinya. Sumber energi ini tersimpan dalam molekul-molekul organik seperti karbohidrat. Untuk tujuan praktis, satu-satunya sumber molekul bahan bakar yang menjadi tempat bergantung seluruh kehidupan adalah fotosintesis. Fotosintesis merupakan salah satu reaksi yang tergolong ke dalam reaksi anabolisme. Fotosintesis adalah proses pembentukan bahan makanan (glukosa) yang berbahan baku karbon dioksida dan air.

Fotosintesis hanya dapat dilakukan oleh tumbuhan dan ganggang hijau yang bersifat autotrof. Artinya, keduanya mampu menangkap energi matahari untuk menyintesis molekul-molekul organik kaya energi dari prekursor anorganik H2O dan CO2. Sementara itu, hewan dan manusia tergolong heterotrof, yaitu memerlukan suplai senyawa-senyawa organik dari lingkungan (tumbuhan) karena hewan dan manusia tidak dapat menyintesis karbohidrat. Karena itu, hewan dan manusia sangat bergantung pada organisme autotrof.

Fotosintesis terjadi di dalam kloroplas. Kloroplas merupakan organel plastida yang mengandung pigmen hijau daun (klorofil). Sel yang mengandung kloroplas terdapat pada mesofil daun tanaman, yaitu sel-sel jaringan tiang (palisade) dan sel-sel jaringan bunga karang (spons). Di dalam kloroplas terdapat klorofil pada protein integral membran tilakoid. Klorofil dapat dibedakan menjadi klorofil a dan klorofil b. Klorofil a merupakan pigmen hijau rumput (grass green pigment) yang mampu menyerap cahaya merah dan biru-keunguan. Klorofil a ini sangat berperan dalam reaksi gelap fotosintesis yang akan dijelaskan pada bagian berikutnya. Klorofil b merupakan pigmen hijau kebiruan yang mampu menyerap cahaya biru dan merah kejinggaan. Klorofil b banyak terdapat pada tumbuhan, ganggang hijau, dan beberapa bakteri autotrof.

Selain klorofil, di dalam kloroplas juga terdapat pigmen karotenoid, antosianin, dan fikobilin. Karotenoid mampu menyerap cahaya biru kehijauan dan biru keunguan, dan memantulkan cahaya merah, kuning, dan jingga. Antosianin dan fikobilin merupakan pigmen merah dan biru. Antosianin banyak ditemukan pada bunga, sedangkan fikobilin banyak ditemukan pada kelompok ganggang merah dan Cyanobacteria.

Reaksi fotosintesis secara ringkas berlangsung sebagai berikut.

Seorang fisiologis berkebangsaan Inggris, F. F. Blackman, mengadakan percobaan dengan melakukan penyinaran secara terus-menerus pada tumbuhan Elodea. Ternyata, ada saat dimana laju fotosintesis tidak meningkat sejalan dengan meningkatnya penyinaran. Akhirnya, Blackman menarik kesimpulan bahwa paling tidak ada dua proses berlainan yang terlibat:
1. Suatu reaksi yang memerlukan cahaya
2. Reaksi yang tidak memerlukan cahaya
Yang terakhir dinamai reaksi gelap, walau dapat berlangsung terus saat keadaan terang. Blackman berteori bahwa pada intensitas cahaya sedang, reaksi terang membatasi atau melajukan seluruh proses. Dengan kata lain, pada intensitas ini reaksi gelap mampu menangani semua substansi intermediat yang dihasilkan reaksi cahaya. Akan tetapi, dengan meningkatnya intensitas cahaya pada akhirnya akan tercapai suatu titik dimana reaksi gelap berlangsung pada kapasitas maksimum.

Teori ini diperkuat dengan mengulangi percobaan pada temperatur yang agak lebih tinggi. Seperti diketahui, kebanyakan reaksi kimia berjalan lebih cepat pada suhu lebih tinggi (sampai suhu tertentu). Pada suhu 35°C, laju fotosintesis tidak menurun sampai ada intensitas cahaya yang lebih tinggi. Hal ini menunjukkan bahwa reaksi gelap kini berjalan lebih cepat. Faktor bahwa pada intensitas cahaya yang rendah laju fotosintesis itu tidak lebih besar pada 35°C dibandingkan pada 20°C juga menunjang gagasan bahwa yang menjadi pembatas pada proses ini adalah reaksi terang. Reaksi terang ini tidak tergantung pada suhu, tetapi hanya tergantung pada intensitas penyinaran. Laju fotosintesis yang meningkat dengan naiknya suhu tidak terjadi jika suplai CO2 terbatas. Jadi, konsentrasi CO2 harus ditambahkan sebagai faktor ketiga yang mengatur laju fotosintesis itu berlangsung.

Jadi, secara umum fotosintesis terbagi menjadi dua tahap reaksi:
1. Reaksi Terang, yang membutuhkan cahaya
2. Reaksi Gelap, yang tidak membutuhkan cahaya